Synthesis and characterization of various coordination modes of $1,1^{\prime}$-bis(diphenylphosphino)ferrocene in iron carbonyl complexes. X-Ray crystal structures of $\left(\eta^{1}-\mathrm{BPPF}\right) \mathrm{Fe}(\mathrm{CO})_{4},\left(\mu, \eta^{2}-\mathrm{BPPF}\right)\left(\mathrm{Fe}(\mathrm{CO})_{4}\right)_{2}$, and (μ, η^{2}-BPPF) $\mathrm{Fe}_{3}(\mathrm{CO})_{10}$

Tae-Jeong Kim, Soon-Chul Kwon, Yong-Hoon Kim, Nam Ho Heo
Department of Industrial Chemistry, Kyungpook National University, Taegu 702-701 (South Korea)

Martha M. Teeter and Akihito Yamano
Department of Chemistry, Boston College, Chestnut Hill, MA 02167 (USA)
(Received June 28, 1991)

Abstract

Reactions of $1,1^{\prime}$-bis(diphenylphosphino)ferrocene (BPPF) with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ and $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ produced a series of iron carbonyl derivatives: $\left(\eta^{2}\right.$ - BPPF$) \mathrm{Fe}(\mathrm{CO})_{3}$ (1), (η^{1} - BPPF)Fe(CO) 4 (2), ($\mu, \eta^{2}-$ $\mathrm{BPPF})\left(\mathrm{Fe}(\mathrm{CO})_{4}\right)_{2}(3),\left(\eta^{2}-\mathrm{BPPF}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{7}(4)$, and $\left(\mu, \eta^{2}-\mathrm{BPPF}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{10}$ (5). The synthesis and characterization of $\mathbf{4}$ and 5 , including X-ray crystal structures of 2,3 , and 5 , confirmed various coordination modes of BPPF. Crystal data are as follows: (η^{1}-BPPF) $)$ (CO) $)_{4}$ (2): orthorhombic, space group Pbca, $a=26.27(1), b=23.18(1), c=10.938(8) \AA, V=6661(7) \AA^{3}, Z=8 ; 3017$ data with $I>$ $3.0 \sigma(I)$ were refined to $R=0.057, R_{\mathrm{w}}=0.056 ;\left(\mu, \eta^{2}-\mathrm{BPPF}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{10}(5)$: monoclinic, space group $P 2_{1} / n, a=11.231(1), b=21.043(4), c=20.373(9) \AA, \beta=97.373(9)^{\circ}, V=4693(4) \AA^{\circ}, Z=4 ; 6082$ data with $I>3.0 \sigma(I)$ were refined to $R=0.054, R_{\mathrm{w}}=0.071$; $\left(\mu, \eta^{2}-\mathrm{BPPF}\right) \mathrm{Fe}_{2}(\mathrm{CO})_{8}(\mathbf{3})$: monoclinic, space group $C 2 / c, a=17.223(7), b=14.97(2), c=18.558(3) \AA, \beta=108.39(3)^{\circ}, V=4541(6) \AA^{3}, Z=4 ; 3201$ data with $I>3.0 \sigma(I)$ were refined to $R=0.070, R_{\mathrm{w}}=0.139$, as a result of difficulties with modeling electron density peaks associated with highly disordered solvent atoms.

Introduction

Ferrocenylphosphines are now well known as efficient ligands for metal complexes in a wide range of homogeneous catalysis. Upon examination of the literature, it is obvious that much interest has been focused on such reactions as hydrogenation of olefinic substrates [1-6], Grignard cross-coupling reactions [7]

[^0]hydrosilylation of ketones $[8]$ and aldol condensation $[9,10]$. Of various achiral and chiral ferrocenylphosphine ligands, those that have been most widely and effectively used in these catalytio reactions are $1,1^{\prime}$-bis(diphenyphosphino)ferrocene (BPPF), 2-(diphenylphosphino)-1-(N.N-dimethylaminocthyl)ferrocene (PPFA), and

Despite wide applications of these ligands in complex formation for use in such catalytic reactions, relaively fow studies have been carried out on the preparation and structure of their iron group complexes and their uses in homogeneous catalysis. We have recently reponted the catalytic propertio of (n BPPFFet(O), (1), (η^{2}-BPPF)Fe($(\mathrm{O})_{4}$ (2), and ($\left.\mu, \eta^{2}-\mathrm{BPPF}\right)\left(\mathrm{Fe}(\mathrm{CO})_{4}\right)$ (3), synthesized at prod. uets of the reaction between the ligand BPPF and FetCO), [11) They prowed to be very efficient catalyst precursers for the sunthesis of carbamatos from the reaction of propargy atohol with secondary amines in the presence of $\mathrm{CO} .[12$.

Prompled by these findings we deeided to look further inta the meativity and coordination modes of ligand BPPF with other iron comonyts such as Fer(CO) and $\mathrm{Fe},(\mathrm{CO})_{1}$. It was hoped to see a new series of iron cmbony derivatives of BPPF with various coordination modes, since from our prevons stodies we have found that the ligand can at not only as a typical chelating hidentate but ats a monodentate diphosphine, of a bridging ligand in dimeric spectes, Although many instances are now known for the chelating mode of this ligand. the later twe modes of coordination for this ligand have so far been sarce [13.14]. In this work.
 crystal structures of iron complexes of BPPF. 2. 3. and 3

Experimental

Reagents and instruments

All manipulations were conducted under an argon atmosphere using a double manifold vacuum system and Schlenk techniques. All commercial reagents were used as received unless otherwise mentioned. Solvents were purifed by standard techniques [15], and were fresbly distilled prior to use Melting points were determined using a Gallenkamp melting point apparatus and are reported without correction. ${ }^{1} \mathrm{H} .{ }^{12} \mathrm{C}$. and ${ }^{5} \mathrm{P}$ NMR specta were recorded on a Bruker Am-300 spectrometer operating at $300,80.15$, and 121.5 MH , respectivels. Infrared spectra were recorded on a ET-IR:Bio-RADITS 20 , 30 spectometer. Mass spectra were obtaincd using a Kratos MS-50 instrument. Microanalyses were perfomed by Ms. T.Y. Park in the Deparment of Industral Chemistry, Kyungnook National University, South Korca.

The ligand BPPF was prepared as described previously [10]. Crsatals of diffaction quality of previousiy reported iron cabonyl complexes 2 and 3 were obtained from hexane/cther mixtures of ratios $5: 1$ and $3: 1$, respectively (1)].

Preparation of (η^{2}-BPPF)Fe, $\left(\mathrm{CO}_{7}(4)\right.$
The ligand BPPF ($0.98 \mathrm{~g}, 1.78 \mathrm{mmol}$) was added to a suspension of $\mathrm{Fe}(\mathrm{CO})$, $(0.88 \mathrm{~g}, 2.41 \mathrm{mmol})$ in $\mathrm{CH}, \mathrm{Cl}, ~(30 \mathrm{~mL})$ in a 100 mL . Schlenk tube with a magnetic stirrer and an argon inter. The reaction mixture was stimed for 12 h. The solution was then filtered on a Celite tube to remove any solid impurities, and the brownish orange filtrate was evaporated to dryness. The remaining oily residue was taken up
in a small volume of THF to be chromatographed on silica gel. Three orange bands developed by eluting with mixtures of hexane and ether. After removing the first two bands (2 and 3) on elution with hexane/ether ($3: 1$) the third band was eluted with ether to obtain 4 as a yellow powder after removal of solvent. Yield of 4: $0.02 \mathrm{~g}, 1.3 \%$. IR (KBr) 2049s, $1971 \mathrm{~m}, 1929 \mathrm{vs}, 1883 \mathrm{~s}, 1875 \mathrm{vs} \mathrm{cm}^{-1}$. Anal. Found: $\mathrm{C}, 57.67$; $\mathrm{H}, 3.72$. ($\mathrm{BPPF}^{2} \mathrm{Fe}_{2}(\mathrm{CO})_{7}$ calc.: $\mathrm{C}, 57.14: \mathrm{H}, 3.28 \%$. Yields of 2 and 3 were 16 and 21%, respectively, based on the ligand.

Preparation of ($\left.\mu, \eta^{2}-\mathrm{BPPF}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{I 0}$ (5)
The title compound was obtained as a minor product along with the compounds 2,3 , and 4 from the reaction of BPPF with $\mathrm{Fe}_{3}(\mathrm{CO})_{12} . \mathrm{Fe}_{3}(\mathrm{CO})_{12}(0.91 \mathrm{~g}, 1.8$ $\mathrm{mmol})$ and BPPF ($1.0 \mathrm{~g}, 1.81 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ in a $100-\mathrm{mL}$, two-necked, round-bottomed flask with a condenser, a magnetic stirrer, and an argon inlet. The solution was refluxed with stirring for 4 h during which time the solution became dark brown with deposit of black precipitates. The solution was then filtered on a Celite tube to remove the precipitates, and the filtrate evaporated to dryness. The remaining dark brown oily residue was dissolved in a small voiume of THF to be chromatographed on silica gel. Four bands developed on elution with mixtures of hexane/cther (5:1) and hexane/ether ($3: 1$), respectively, the third purple band was eluted with a $2: 1$ mixture of hexane and ether, and 5 obtained as dark purple crystals after removal of solvents followed by crystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether ($1: 3$) at room temperature. The remaining orange band was eluted with ether to be identified as 4. Yield of 5: 0.51 g, 8\%. IR (KBr) 2067vs, 1998vs, 1952s, 1782s, 1740s cm ${ }^{-1}$. Anal. Found: C, 52.92; $\mathrm{H}, 3.00$. (BPPF) $_{3}(\mathrm{CO})_{10}$ calc.: $\mathrm{C}, 52.76 ; \mathrm{H}, 2.82 \%$. Yields of $\mathbf{2}, \mathbf{3}$, and 4 were 2 , 21 , and 6%, respectively.

X-Ray crystallographic analysis of 2, 3, and 5

For each compound, a chunky crystal, approximately $0.3 \times 0.3 \times 0.3 \mathrm{~mm}$, was mounted on a glass fiber. All measurements were made on a Rigaku AFC5R diffractometer with graphite monochromated Mo- K_{α} radiation ($\lambda=0.71069 \AA$) and 12 kW rotating anode generator. Preliminary experiments for the cell parameters and orientation matrix for each crystal were carried out by least-squares refinement, using the setting angles of 25 carefully centered reflections in the range $20^{\circ}<2 \theta<35^{\circ}$.

For each crystal, diffraction intensities were collected at a constant temperature of $20 \pm 1^{\circ} \mathrm{C}$ using the $\omega-2 \theta$ scan technique with a scan speed of $32^{\circ} / \mathrm{min}$ (in ω) which is a maximum attainable speed with the diffractometer. Omega scans of several intense reflections were made prior to the data collection to optimize the proper scan width for each crystal. The weak reflections ($I<10 \sigma(I)$) were rescanned (maximum of 3 rescans) and the counts were accumulated to assure good counting statistics. Stationary background counts were recorded on each side of the reflection. The ratio of peak counting time to background counting time was $2: 1$. The diameter of the incident beam collimator was 0.5 mm and the crystal to detector distance was 40 cm . The crystallographic data and additional details of data collection and structure determination are summarized in Table 1.

The intensities of three representative reflections which were measured after every 150 reflections remained constant throughout data collection indicating

Table :
Summary of erystallographic data and intensity collection for 2. 3. and $\mathbf{3}$

crystal and electronic stability for two crystals. Decay correction was made for compound 5. Azimuthal scans of several reflections were made and absorption corrections were applied for all thee crystals. The data were conrected for Lormaz and polarization effects. including that due to incident heam monochromatization. Of the reflections collected those with $I>3 \sigma(I)$ were ased for sucture determination.

The structure was solved by direct methods [17*] and refined by using full-matrix least-squares methods [18*]. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the structure factor calculation in idealized positions $\left(d_{\mathrm{C}-\mathrm{H}}\left(s p^{2}\right)=0.95 \AA\right.$) and were assigned with isotropic thermal parameters which are 20% greater than the $B_{c a}$ value of the atom to which they were bonded. Neutral atoms scattering factors were taken from Cromer and Waber [19].

[^1]Table 2
NMR data for $\mathbf{1 - 5}{ }^{a}$

Compound	${ }^{1} \mathrm{H}$ NMR		${ }^{31} \mathrm{P}$ NMR	${ }^{13} \mathrm{C}$ NMR (CO)
	Cp	Phenyl		
$1^{\text {b }}$	$\begin{aligned} & 4.20(\mathrm{~s}, 4 \mathrm{H}), \\ & 4.46(\mathrm{~s}, 4 \mathrm{H}) \end{aligned}$	$7.40-7.64$ (m, 20H)	64.8 (s)	$220.7(\mathrm{t}, J(\mathrm{P}-\mathrm{C})=9.3 \mathrm{~Hz})$
2°	$\begin{aligned} & 4.46(\mathrm{~s}, 2 \mathrm{H}), \\ & 4.38(\mathrm{~s}, 2 \mathrm{H}), \\ & 3.88(\mathrm{~s}, 2 \mathrm{H}), \\ & 3.68(\mathrm{~s}, 2 \mathrm{H}) \end{aligned}$	7.22-7.49 (m, 20H)	$\begin{array}{r} 68.4(\mathrm{~s}), \\ -15.6(\mathrm{~s}) \end{array}$	$213.2(\mathrm{~d}, J(\mathrm{P}-\mathrm{C})=19 \mathrm{~Hz})$
$3{ }^{\text {b }}$	$\begin{aligned} & 4.23(\mathrm{~b}, 4 \mathrm{H}), \\ & 3.93(\mathrm{~b}, 4 \mathrm{H}) \end{aligned}$	7.41-7.44 (m, 20H)	61.6 (s)	$213.0(\mathrm{~d}, J(\mathrm{P}-\mathrm{C})=19 \mathrm{~Hz})$
4	$\begin{aligned} & 4.21(\mathrm{~b}, 4 \mathrm{H}) \\ & 3.83(\mathrm{~b}, 4 \mathrm{H}) \end{aligned}$	$7.50-7.26$ (m, 20H)	$\begin{aligned} & 73.5(\mathrm{~s}) \\ & 64.6(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & 213.1(\mathrm{~d}, J(\mathrm{P}-\mathrm{C})=21 \mathrm{~Hz}) \\ & 213.6(\mathrm{~b}) \end{aligned}$
5	$\begin{aligned} & 4.47(b, 4 H) \\ & 4.06(b, 4 H) \end{aligned}$	7.67-7.25 (m, 20H)	39.0 (s)	$230.8(\mathrm{~m}), 216.3$ (s)

${ }^{a}$ In CDCl_{3}. Chemical shifts are in ppm. Key: s, singlet; b, broad singlet; m, multiplet; t , triplet; d, doublet. ${ }^{b}$ Values taken from ref. 11.

Anomalous dispersion effects were included in $F_{\text {calc. }}$ [20]; the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Cromer [21]. All calculations were performed using the texsan [22] crystallographic software package at Boston College. The final cycles of refinement led to the R indices listed in Table 1. The final positional and thermal parameters of the non-hydrogen atoms are listed in Table 3, selected interatomic distances and angles are given in Table 4, and complete lists of bond lengths, bond angles, and observed and calculated structure factors are available from the authors.

Results and discussion

Syntheses and characterization

Scheme 1 shows various reaction conditions that lead to the preparation of a new series of iron carbonyls $1-5$ demonstrating all possible coordination modes for the ligand BPPF with iron carbonyls.

As the yields and product distribution depended significantly on the reaction conditions, and as the chromatographic separation of these compounds was rather tedious, we have employed a number of experimental procedurcs to guarantec the preferential formation of any particular compound(s) over others in high yields. Some experimental details of the optimum reaction conditions for the highest yields of $\mathbf{1 - 3}$ can be found in our previous report [11]. As illustrated in Scheme 1, a representative procedure is to treat BPPF with $\mathrm{Fe}(\mathrm{CO})_{5}$ in refluxing toluene or benzene for a certain period of time. It was found that the reaction time and temperature played an important role in the product distribution of $\mathbf{1 - 3}$. The longer the reaction time or the higher the reaction temperature, the higher the yields of 2 and 3 achieved at the cost of 1 , suggesting 1 to be thermodynamically less favored than 2 and 3 . In line with these observations is the finding that $\mathbf{1}$ decomposes readily in solution in air while 2 and 3 remain quite stable for an extended period of time.

When $\mathrm{Fe}_{2}\left(\mathrm{OO}\right.$, and $\mathrm{Fe}(\mathrm{CO})_{12}$ were treated with BPPF, two new hi- and trinuclear complexes 4 and 5 were formed in addition to the expected products 2 and 3. although their yields wer quite low ($\times 10 \%$) Interestingly the chelate diphosphine complex I was not formed in any observable amont Thus the recult shown in Scheme I reveal that chelation is not a chese of preference at ar at the reactions of BPPF with iron corbonyls are concerned althogeh there are numerous examples for a chelating diphosphine lype complex with this ligam $13,4.6,7,12$,

Since the full charactoration an : 3 , including Xray ontallographic anaysi of 1 , has already been made in our prevous paper seme of the selceted VMR data along with those of 4 and 5 are listed io Table 2 for comparative purposen

The fommbation of the heptacarbongl derivative (4) is sugested as seh based on microandytical and NMR data for the compound. The presence of two phosphorus singlets at low hold indicates a non-symmetric chelation of BPP on a single iron atom rather than a symmetric bridging mode athough an AB pattern instead of a pair of singlets would be expectod. The come temperatum ${ }^{2} \mathrm{C}$ VMR spectrum in the carbonyl region exhibits a broad doublet at 213.1 ppo and abroad
 rise to a new moltiplet comed at 21.5 ppom. appatente shomeng a fuxienal behavior. The pattem and the mombers of infared carbond sfetehing band atome do not show the presence of any bridging carbonys imoted in this dyamic process. Altempts to obtan 4 as erystals suitate for ersallogmphe stadies hate so far been frustrating. and the coreet solution structure emid not be deduce with any certainty.

The decacatonyl dervative (5) exhibis thre torminal carhonyl bands an 2067. $194 x^{\text {, and }} 1492 \mathrm{~cm}$ ' and two bridging cathonys bands at 1782 and 1740 cm ' the
 The room temperature "(VMR shoms a broal single at ath 3 bom tor the fow terminal carbonks located at the ungue Fe atom (Fet in fige th and a complex multiplet centered at 230.8 ppom arising from the fou termina and two bridging carbonyls. This reveats the presence of two independent sermbling proceses occurning within each group of non-cquatent carbonys. Lowemg the temperature down to $\cdots 70 \mathrm{C}$ did not significantly atter the pattern of the spectrum except a little further broadening of each signal because of sowing down of the exchange process. An attempt wo cony out more exemsio varibo lemperature NMR studies was unsuccessful due to the fact that at the temperatuos botow 7 of crystals began to deposit from the solution.

Finally, in connection with the 'II NMR pattern for the cyclopentadienyl ming protons in 1-5, they all exhibit a smple $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ for ANXX') pattern with the coupling constants ${ }^{3} J(\mathrm{HH})$ and ${ }^{3} J(\mathrm{PH})$ negligibly small Thes a wo line pattern in 1. 3, 4. and 5. and a four line pattem in 2 are exhbited for the Ab or AX) portion.

X-Ray asstal structures of 2, 3. and 5

Apart from the important chemistry of compounds as catalysts [11] the structures of these complexes contain interesting series from the structural viewpoint such as various coordination modes and the environment of the ligand BPPF and Fe atoms. respectively. All crystals contaned umsolvated molectes of the complexes except for 3 in which highly deondered soteon moiety was recognized hut

Table 3
Final positional parameters and B_{cq} temperature factors " for ($\left.\eta^{\prime}-\mathrm{BPPF}\right) \mathrm{Fe}(\mathrm{CO})_{4}$ (2), (μ, η^{2} $\mathrm{BPPF})\left(\mathrm{Fe}(\mathrm{CO})_{4}\right)_{2}(3)$, and $\left(\mu, \eta^{2}-\mathrm{BPPF}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{\mathrm{t} 0}(5)$

Atom x	y	B_{cq} $\left(\AA^{2}\right)^{b}$	Atom x	z	B_{cq} $\left(\AA^{2}\right)^{b}$

(a) $\left(\eta^{H}-\mathrm{BPPF}\right) \mathrm{Fe}(\mathrm{CO})_{4}(2)$

Fe1 0.6294(1) 0.0143(1)
$\mathrm{Fe} 2 \quad 0.6183(1) \quad 0.2012(1)$
P1 0.5485(1) - 0.0640(1)
P2 0.6699(1) 0.1243(1)
$\mathrm{Cl} 0.6034(3)-0.0178(4)$
C2 0.6562(3)-0.0324(4)
C3 0.6844(3) $0.0195(4)$
C4 0.6505(3) 0.0663(4)
C5 $0.6014(3) \quad 0.0436(4)$
C6 0.6404(3) $0.0558(4)$
$\begin{array}{lll}\mathrm{C} 7 & 0.5870(3) & 0.0473(4)\end{array}$
C8 0.5783(3)-0.0122(4)
C9 0.6248(4) - $0.0409(4)$
C10 0.6633(3) 0.0007(4)
C11 0.5493(3) - 0.0759(4)
C12 $0.5360(3)-0.1298(4)$
C13 0.5335(3) $-0.1380(4)$
C14 0.5438(3) - 0.0922(5)
C15 0.5562(3) $-0.0412(5)$
C16 $0.5589(3)-0.0322(4)$
C17 0.5728(3) - 0.1312(4)
C18 0.5533(4) $-0.1504(4)$
C19 0.5713(5) -0.2000(6)
$0.2163(1) \quad 3.06(5) C 20 \quad 0.6089(5)-0.2318(5)$ $0.3991(1) \quad 5.19(7) \mathrm{C} 21 \quad 0.6281(4)-0.2147(4)$ $0.0371(1) \quad 3.6(1) \quad \mathrm{C} 22 \quad 0.6108(3)-0.1654(4)$ $\begin{array}{lllll}0.4106(2) & 3.2(1) & \mathrm{C} 23 & 0.7279(3) & 0.1255(4)\end{array}$ $\begin{array}{lllll}0.0544(6) & 3.1(4) & \mathrm{C} 24 & 0.7663(3) & 0.0868(4)\end{array}$ $\begin{array}{lllll}0.0734(6) & 3.6(4) & \mathrm{C} 25 & 0.8088(3) & 0.0863(4)\end{array}$ $\begin{array}{lllll}0.0869(7) & 4.2(4) & \mathrm{C} 26 & 0.8128(4) & 0.1238(5)\end{array}$ $\begin{array}{llll}0.0752(7) & 4.1(4) & \mathrm{C} 27 & 0.7743(4)\end{array}$ $0.0540(7) \quad 3.7(4) \quad$ C28 $\quad 0.7323(3)$ $\begin{array}{llll}0.3791(6) & 3.2(4) & \mathrm{C} 29 & 0.6954(3)\end{array}$ $\begin{array}{llll}0.3561(6) & 3.3(4) & \mathrm{C} 30 & 0.6714(4)\end{array}$ $0.3446(7) \quad 4.1(4) \quad \mathrm{C} 31 \quad 0.6882(4)$ $\begin{array}{llll}0.3606(7) & 4.1(4) & \mathrm{C} 32 & 0.7280(4)\end{array}$ $0.3801(7) \quad 4.0(4) \quad C 33 \quad 0.7527(3)$ $\begin{array}{lllll}-0.1298(7) & 3.3(4) & C 34 & 0.7364(3) \\ -0.1764(8) & 4.5(5) & C 210 & 0.5813(4)\end{array}$ $\begin{array}{lllll}-0.1764(8) & 4.5(5) & C 210 & 0.5813(4) \\ -0.3039(9) & 5.1(5) & C 220 & 0.6719(5)\end{array}$ $-0.3807(8) \quad 4.9(5) \quad$ C230 $0.5806(6)$ $-0.3342(8) \quad 4.8(5) \quad C 240 \quad 0.6006(3)$ $-0.2082(8) \quad 3.8(4) \quad 0210 \quad 0.5564(3)$ $0.0984(8) \quad 4.2(5) \quad \mathrm{O} 220 \quad 0.7063(4)$ $0.2053(9) \quad 5.3(6) \quad$ O230 $0.5590(5)$ $0.2600(11) 7.4(8) \quad 0240 \quad 0.5871(3)$
$\begin{array}{lll}0.1621(5) & 0.1474(9) & 6.0(6)\end{array}$
$0.1640(4) \quad 0.2203(8) \quad 4.1(4)$
$0.1147(3) \quad 0.5666(7) \quad 3.6(4)$
$0.0784(4) \quad 0.6463(7) \quad 5.0(5)$
$0.0748(4) \quad 0.7665(8) \quad 5.8(6)$
$0.1075(5) \quad 0.8041(8) \quad 4.9(5)$
$0.1431(4) \quad 0.7221(8) \quad 5.1(5)$
$0.1465(4) \quad 0.6057(8) \quad 4.4(5)$
$0.1722(5) \quad 0.5195(10) \quad 6.8(7)$
$0.2449(5) \quad 0.4329(10) \quad 6.8(7)$
$0.2637(6) \quad 0.3932(11) 13(1)$
$0.1851(4) \quad 0.2451(8) \quad 4.7(5)$
$0.1538(5) \quad 0.5963(8) \quad 11.8(7)$
$0.2724(3) \quad 0.4548(8) \quad 10.9(6)$
$0.3064(5) \quad 0.3876(9) \quad 17(1)$
$0.1788(3) \quad 0.1488(6) \quad 6.0(4)$
(b) $\left(\mu, \eta^{2}-\mathrm{BPPF}\right)\left(\mathrm{Fe}(\mathrm{CO})_{4}\right)_{2}(3)$

Fel	1.0000	$0.4882(2)$	0.2500	3.3 (1)	C 17	$0.7120(7)$	0.4461(8)	0.1716 (7)	3.2(5)
Fe 2	0.7524(1)	0.6559(1)	$0.1244(1)$	3.60 (8)	C 18	$0.7088(8)$	0.4369(9)	0.2445 (8)	4.2(6)
P	$0.7907(2)$	$0.5128(2)$	$0.1517(2)$	$2.9(1)$	C 19	$0.6482(1)$	$0.3936(12)$	$0.2612(10)$	8)
C	$0.8773(7)$	$0.4942(9)$	$0.2362(6)$	3.3(5)	C 20	$0.5869(11)$	$0.3558(11)$	$0.2028(13)$	7 (1)
C2	$0.9096(8)$	$0.4116(9)$	$0.2700(7)$	3.8 (6)	C 21	$0.5861(9)$	$0.3633(11)$	$0.1285(11)$	6.2(8)
C3	$0.9725(8)$	$0.4286(11)$	$0.3389(8)$	4.5(7)	C 22	$0.6519(8)$	$0.4097(10)$	0.1133 (8)	4.7(7)
C4	$0.9800(7)$	$0.5218(12)$	$0.3491(7)$	$4.9(7)$	C 210	$0.6766(10)$	0.6154(10)	0.0405(9)	5.7(7)
C5	$0.9225(7)$	$0.5657(9)$	$0.2862(7)$	$3.7(6)$	C 220	$0.7398(9)$	$0.6661(10)$	0.2162(9)	4.8 (7)
C11	0.8124(7)	$0.4478(8)$	$0.0779(7)$	3.1(5)	C 230	$0.7109(10)$	$0.7661(10)$	$0.1025(8)$	5.1(7)
C 12	0.8179(8)	$0.3568(9)$	$0.0815(8)$	$4.3(6)$	C240	$0.8488(10)$	0.6921(9)	$0.1186(8)$	4.7(7)
C13	0.8387(9)	$0.3094(10)$	$0.0256(10)$	5.4(7)	O 210	0.6299(8)	0.5938(9)	$-0.0149(7)$	9.6 (7)
C14	0.8540(10)	$0.3526(12)$	-0.0340 (10)	$5.9(8)$	O 220	$0.7323(7)$	$0.6771(8)$	$0.2747(6)$	7.5(7)
C15	0.8478(9)	0.4449 (12)	-0.0381(8)	$5.4(8)$	O 230	$0.6818(9)$	0.8339(7)	$0.0900(7)$	7.8(7)
C16	$0.8269(8)$	0.4924(9)	$0.0173(7)$	4.1(6)	O 240	0.9111 (7)	$0.7163(8)$	$0.1161(7)$	$6.9(6)$

(c) $\left(\mu, \eta^{2}-\mathrm{BPPF}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{10}(5)$

Fe 1	$0.2544(1)$	$0.0693(1)$	$0.1453(1)$	$2.90(5) \mathrm{C} 25$	$0.7648(8)$	$0.1105(5)$	$0.0456(5)$	$4.9(5)$
Fe 2	$0.2656(1)$	$0.2922(1)$	$0.1501(1)$	$2.97(5)$	C 26	$0.7975(9)$	$0.1357(5)$	$-0.0114(6)$
Fe 3	$0.3718(1)$	$0.2585(1)$	$0.0505(1)$	$2.93(5)$	C 27	$0.7133(9)$	$0.1644(5)$	$-0.0566(5)$
Fe	$0.3517(1)$	$0.3855(1)$	$0.0747(1)$	$3.86(6)$	C 28	$0.5959(8)$	$0.1687(5)$	$-0.0444(5)$
$4.0(5)$								
P 1	$0.1778(2)$	$0.2164(1)$	$0.2082(1)$	$2.8(1)$	C 29	$0.3206(7)$	$0.1183(4)$	$-0.0425(4)$
F 2	$0.4052(2)$	$0.1539(1)$	$0.0320(1)$	$2.6(1)$	C 30	$0.3706(8)$	$0.0697(4)$	$-0.0758(4)$
F	$3.5(4)$							
C 1	$0.1445(7)$	$0.1373(4)$	$0.1764(4)$	$3.0(4)$	C 31	$0.3040(9)$	$0.0428(4)$	$-0.1323(5)$
C 2	$0.1420(8)$	$0.0802(5)$	$0.2161(5)$	$3.8(4)$	C 32	$0.1881(10)$	$0.0642(5)$	$-0.1557(5)$
$4.7(5)$								
C 3	$0.1044(8)$	$0.0293(5)$	$0.1745(6)$	$4.4(5)$	C 33	$0.1409(9)$	$0.1123(6)$	$-0.1206(6)$
C 4	$0.0799(8)$	$0.0524(5)$	$0.1079(5)$	$4.5(5)$	C 34	$0.2052(8)$	$0.1393(5)$	$-0.0657(5)$

Table 3 (continued)

Atom	1	Y	\because	$\begin{aligned} & B_{c u} \\ & A^{\prime} \end{aligned}$	Atom	1	1	$=$	$\begin{aligned} & B_{\mathrm{w}} \\ & \left(A^{2}!\right. \end{aligned}$
C5	$0.1054(7)$	$0.1189(4)$	0.1081(5)	3.44)	(200)	$0.4209(8)$	1,250th(4)	1).1597(4)	$32(4)$
C6	(1.3937(7)	$0.0920(4)$	19.0942(4)	$2.864)$	(210)	(1.1304(10)	(1.3.375(5)	(1.13416)	$4.75)$
(7	(0.42720)	$0.0981(4)$	10.1652(4)	3.44)	(220)	0.3145(9)	(1)3374 ${ }^{(1)}$	$0.240(5)$	425
(8)	$0.4115(8)$	0.037265	() $1435(5)$	4.985)	C300)	(1.2027(s)	(1) $2564+4$	11, 5 (6) 0^{5}	3.641
(9)	$0.3692(8)$	-0.0055 (4)	1).1428(5)	4.165	C310	(0, 3,38049)	9.279914	- 10.166305	$4+5)$
(10)	$0.357308)$	$0.0376(4)$	4, mumbl	$3.4(4)$	(320	0.526509	11. $2787+1$	11, 110565	3.44
Cll	$0.2471(7)$	$0.20112(4)$	$13.294 .3(1)$	3.94.$)$	(+10	0.4892110	$0+1+25$	11,61276!	4.868
C12	(1).1788(8)	(1.1788(5)	434179	4.195	(43)	(0.2172(10)	0.38416	1, 191485	4.75
C13	$0.2328(11)$	(1. $16004(5)$	4. 4060565	$5.2(6)$	C.430	(1.311.5(11)	$0.456 .45)$	H. 1030 m	$3.600)$
C14	0.3546(11)	$0.1777(0)$	(1)240 ${ }^{(1)}$	6.277	(440)	11.4780 (10)	118388	O. 1308 T	4983
C15	11. $22110(9)$	$0.1909(6)$	(1, 397466	$5.6(6)$	()200	11.510165	1) 2 +2x	(1) 1007 3 (3 Ma^{4}
(16)	$0.36 \times 60(8)$	6.21129	11.56555	4.2459	0210	6.04.5.97	13, mbonal	CHPS14	B14 ${ }^{\text {a }}$
(17)	0.02880	$0.2450(+)$	922104	3.34)	()220	0.34550	10.34, 16 (+1	(1.27-464)	6. 5.4
(18)	- $0.0727(8)$	$0.2232(5)$	(1. $\times 6.563$	S.045	(0,300	0.60625	11.2470.3)	0.6758	+.11.
(1)	-0.1838(0)	0.247907	11, 19117)	7.117	0.310	0.318085	(1) 2.364	(1,609.9.4)	- +5)
(2)	$-11.1938(10)$	0.29 .507	(1.238)(6)	6. K (7)	0.320	(.6)52(6)	4.9259	i). $55 \mathrm{3m}$	S 4.4
(2)	- $13.04322(10)$	(1.3162(6)	$11.276 \times 5)$	6, () (6)	()411	0.493048	$4+214$	- 11012294	729
CO	0.0177(9)	1). 292606	(1,2678(5)	+N5)	() L^{19}	0.1.2901	(1, 80.ent)	11, 112380.4	6,.8(4)
(2)	0.5599078	(1.1494)	11.01384	$3.14+1$	()430)	$0.20829)$	(1, 506×4	11.130051	y 5 (6)
(24	$0.6443(8)$	$11.11 .35(4)$	(1.15x. 5)	3.741	()440	1.58850	0.3).3.14?		684

"Numbers in parentheses are the camated standard devations in the unss of the leas sembitiont figure given lor the corresponding parameter. " $B_{\text {ce }}$; for ansotropicaty refinct atom- dre given in the

not identified in any forms. However, the positions of the atoms in ligand BPPF and iron carbonyls are highly refined as shown in their esd's of positional parameters and selected structural data.

As found in other metal carbonyl complexes of BPPF [13.14], the ligand BPPF provides several types of coordination modes in which BPPF should possess two kinds of freedoms for adjusting the coordination mode to minimize the strains of BPPF caused by the complexation to the Fe atom, that is, the rotation around the $\mathrm{Cp}-\mathrm{Fe}-\mathrm{Cp}$ axis (Scheme 2) and the tilt of the two Cp rings. With these structural freedoms, BPPF can adjust its bite angle and/or distance between wo metal atoms which BPPF bridges. With the previously reported bidentate stocture of BPPI in 1. the iron carbonyl complexes 2. 3, and 5 provide new coordination modes of BPPF as monodentate (2) and bridging modes (3 and 5), as shown in Figs. 1-3. respectively. The selected principal bond lengthe and angles are tabulated in Table 4.

The Fe atom of iron carbonyl in each structure is at the center of the trigonal bipyramid environment. The distortion from ideal geometry is dependent on the coordination modes of BPPF. As suggested with a bidentate BPPF with one iron carbonyl, the most severe distortion from the ideal trigonal bipyramidal geometry is found in 1 ($168.2(3)^{\circ}$, angle between two atoms in axial positions (Pl Fe? (1)). A small distortion is found in 3 with bridging mode of BPPF (17585) and in 2 with monodentate BPPF $\left(176.9(5)^{\circ}\right)$. The coordination enviromment of fe atoms in

Table 4
Selected bond lengths $\left(\AA^{\circ}\right)$ and bond angles $\left({ }^{\circ}\right)^{a}$ for 2, 3, and $\mathbf{5}$

Bonds and angles	2	3	5
Selected bond lengths (A)			
Fel-C1	2.040(7)	2.05(1)	$2.039(8)$
$\mathrm{Fe} 1-\mathrm{C} 2$	$2.029(7)$	2.06 (1)	$2.028(8)$
Fe1-C3	$2.025(8)$	2.06 (1)	2.034(9)
Fel-C4	2.034(8)	2.04(1)	2.04(1)
Fel-C5	$2.038(8)$	2.04(1)	2.031(9)
Fel-C6	$2.042(7)$	-	$2.036(8)$
Fel-C7	$2.040(7)$	-	$2.023(9)$
Fel-C8	2.037(8)	-	$2.015(9)$
Fel-C9	$2.037(8)$	-	$2.039(8)$
Fel-C10	$2.025(8)$	-	$2.036(8)$
Fe2-C200	-	-	$1.897(9)$
Fe2-C210	$1.77(1)$	$1.79(2)$	1.79 (1)
Fe2-C220	$1.77(1)$	1.79(2)	1.76 (1)
Fe2-C230	1.75 (1)	1.79(2)	-
Fe2-C240	1.79(1)	1.78 (2)	-
Fe2-C300	-	-	2.05(1)
Fe3-C200	-	-	$2.052(9)$
Fe3-C300)	-	-	$1.920(9)$
Fe3-C310	-	-	1.76 (1)
Fe3-C320	-	-	1.78 (1)
Fe4-C410	-	-	1.79(1)
Fe4-C420	-	\sim	1.81(1)
Fe4-C430	-	-	1.78 (1)
Fe4-C440	-	-	1.80 (1)
Fe2-Fe3	-	-	$2.553(2)$
$\mathrm{Fe} 2-\mathrm{Fe} 4$	-	-	$2.728(2)$
$\mathrm{Fe} 3-\mathrm{Fe} 4$	-	-	$2.730(2)$
Fe2-P1	-	2.251(5)	$2.266(3)$
$\mathrm{Fe} 2-\mathrm{P} 2$	2.243(3)	-	-
Fe3 P2	-		$2.270(3)$
P1-C1	$1.807(8)$	1.81(1)	$1.813(9)$
P1-C11	$1.846(8)$	1.81(1)	$1.828(8)$
P1-C17	$1.811(9)$	1.81(1)	$1.825(8)$
P2-C6	$1.801(8)$	-	$1.809(8)$
P2-C23	$1.844(8)$	-	$1.836(8)$
P2-C29	1.847(8)	-	$1.824(8)$
C200-O200	-	-	1.17(1)
C210-O210	1.15 (1)	1.14(2)	1.15(1)
C220-O220	1.13 (1)	1.14(2)	1.16(1)
C230-O230	1.14(1)	1.12(2)	-
C240-O240	$1.12(1)$	1.15(2)	-
C300-O300	-	--	1.18(1)
C310-O310	-	-	1.16(1)
C320-O320	-	-	1.15(1)
$\mathrm{C} 410-\mathrm{O} 410$	-	-	1.14(1)
C420-0420	-	-	$1.14(1)$
C430-O430	-	-	$1.12(1)$
C440-O440	-	-	1.13(1)

Table 4 （comotianced）

Bonds and angles	2	3	5
Selected bond angles（deg）			
P2 Fe2 C210	89.341		
	$87.9+1$		
P －FC2 C230	17645		
P －FC2－（241）	9293		
Pl－Fez－C20			$40.30)$
P1 Fez－C310		87．465）	9－846
P1．．FC－C20		89.0659	9） 10
P1－FQ ${ }^{\text {P }}$ C 30		89． 27	
P1－F2）（24		4585	
P1 Fe？－ 300			49173）
（20）Fe2－200			$16^{-14} 4+3$
C200－Fez－20			
Crat Fer（30\％			9694
（200）FCr Pl			（4）53）
（200） Fe － FO 3			543）
（2011－Fe－ FO_{4}	－	\cdots	45， 16
C210－Fe？－C220	11495	135.77	9245
C210－Fe C230	9 y （1） 6	89.271	
	11865	119.107	
（220－fer（230	welt	88.761	
（220） Fe ？ C （ +1	12185	115.29	\cdots
（230－FC2－C240	8945	91.81	
（300－「ご・く20）			81.874
（300）Fe2－ 220			17074
（300）Fer－P		－	95M，
（300） FC ？-FO 3			$4 \mathrm{x})$
C3nm－Feztet			A－33）
P1－Fe2－Fu		－	180.76
P1－Fe？Fet		－	12tyme
Fe3－Fen－Fet			121085
P2－Fe？－Fe？	．	\cdots	monces
P2－RC3 Fet	－	－－	1－5mes
Fe 2 － $\mathrm{Fe}=\mathrm{Fe} 4$			6，2076
C200－Fe3－Fiz		．－	17112）
Com Fes Fet			829
C200 Fe3 Pa	．．－	\cdots	46，33）
C300－Fe3－Fe2	．．．		4．3（3）
C300－Fes Fet	\cdots		
C3001－Fe3－P2	－	．－	tollus
$\mathrm{FC} 2 \mathrm{Fe} 4-\mathrm{Fe} 3$	－	－	5－774
（1）Pl－Fe？	－	116．3（4）	123.813
（i－Pl－Cl）	100．53）	$105.2(5)$	16，｜6．4
（1－P1－C1？	1010（0）	$101.7(5)$	107＋14 11
Cll Pi Fiz		117．2（4）	110.731
（1）P1（17	10364	$101.8(6)$	102 4 ＋1
C17－P1－Fez		112.64	（1）x^{3}
（6－P2－FC2	11580	－	
（6－P2）Ca3	105．103	－	111．54，
（6）P2－（2）	113．1（4）	－	101.24
C23－P2－Fe2	117.163		
（23－P2－C29	$102.8+1$		11914
C29 P2 $\mathrm{Fez}^{\text {a }}$	111．03）		

Table 4 (continued)

Bonds and angles	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$
$\mathrm{C} 6-\mathrm{P} 2-\mathrm{Fe} 3$	-	-	$123.4(3)$
$\mathrm{C} 23-\mathrm{P} 2-\mathrm{Fe} 3$	-	-	$109.6(3)$
$\mathrm{C} 29-\mathrm{P} 2-\mathrm{Fe} 3$	-	-	$116.9(3)$
$\mathrm{O} 200-\mathrm{C} 200-\mathrm{Fe} 2$	-	-	$145.9(7)$
$\mathrm{O} 200-\mathrm{C} 200-\mathrm{Fe} 3$	-	-	$133.3(7)$
$\mathrm{Fe} 2-\mathrm{C} 200-\mathrm{Fe} 3$	-	-	$80.4(3)$
$\mathrm{O} 210-\mathrm{C} 210-\mathrm{Fe} 2$	$178(1)$	$176(2)$	$179(1)$
$\mathrm{O} 220-\mathrm{C} 220-\mathrm{Fe} 2$	$180(1)$	$177(1)$	$177(1)$
$\mathrm{O} 230-\mathrm{C} 230-\mathrm{Fe} 2$	$175(2)$	$177(2)$	-
$\mathrm{O} 240-\mathrm{C} 240-\mathrm{Fe} 2$	$174.4(8)$	$179(1)$	-
$\mathrm{O} 300-\mathrm{C} 300-\mathrm{Fe} 2$	-	-	$134.3(7)$
$\mathrm{O} 300-\mathrm{C} 300-\mathrm{Fe} 3$	-	-	$145.4(8)$
$\mathrm{Fe} 2-\mathrm{C} 300-\mathrm{Fe} 3$	-	-	$79.9(4)$

" The numbers in parentheses are the estimated standard deviations in the units of the least significant digit given for the corresponding parameters.

5 is very complicated and is similar to those found in $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ (see below) [23,24]. All carbon atoms of carbonyls in the three crystal structures are about 1.78(1) A (average) apart from the central iron atom, with no particular differences in their equatorial and axial positions. Only their angles with adjacent ligands distinguish their position.

The bond distances between Fe and P atoms are 2.243(3), 2.251(5), and 2.266(3) and $2.270(3) \AA$ for complexes 2,3 and 5 , respectively, showing quite similar distances to those found in complex $\mathbf{1}$ (2.243(3) and $2.256(3) \AA$) [11] and (dppe) $\mathrm{Fe}(\mathrm{CO})_{3}[25]$ and small elongation of those found in $\mathbf{5}$, as expected in the coordination of BPPF with the bulkier $\mathrm{Fe}_{3}(\mathrm{CO})_{10}$ moiety.

The ferrocene portion of BPPF ligands in the crystal structures of the four molecules showed various kinds of geometries with the rotation around axes perpendicular to the centers of the two cyclopentadienyl rings and Fe atoms, demonstrating its structural flexibility which is dependent on the coordination modes of BPPF ligand to Fe atoms of additional iron carbonyls. In complex 1 (bidentated BPPF) and 5 (bridged to the same $\mathrm{Fe}_{3}(\mathrm{CO})_{10}$ moiety), the rotation is somewhat limited showing +7.5 and $+61.6^{\circ}$ of rotation from Type I in Scheme 2 with preference for the eclipsed form (+7.5 and -10.4° from a complete eclipsed form of Types I and III in Scheme 2, respectively). When they are, however, either monodentated (2) or bridged to two separated iron carbonyls through P atoms (3), their rotational freedoms are greatly increased to give almost opposite ligational direction $\left(+132.79\right.$ and 162.85° rotation from Type I and -11.21 and +18.85 rotation from Type V, respectively for the complexes 2 and 3). All ferrocenes in three (1, 2, and 5) out of these four complexes have preferential geometry of eclipsed forms (see above), while that in $\mathbf{3}$ has a geometry almost in the middle of the eclipsed and staggered forms $\left(+18.85\right.$ and -17.15° rotation from Types V and VI, respectively).

In all compounds, the cyclopentadienyl rings are planar within experimental error but show slight deviations from being parallel to each other; 2.2, 2.64, 1.65, 3.07° for compounds $\mathbf{1 , 2}, \mathbf{3}$, and $\mathbf{5}$, respectively. This non-coplanarity is probably
sheme 1
(5)

1

II

111

IV

V

VI

Scheme 2
caused by the displacement of the phosphine substitutes from the cyclopentadienyl rings ($+0.12 \AA$ on average).
$\mathrm{P}-\mathrm{C}$ bond lengths are slightly different depending on the kinds of rings in which the C atoms belong. With C atoms of cyclopentadienyl rings, $\mathrm{P}-\mathrm{C}$ bond lengths are slightly shorter $(1.801-1.810 \AA)$ than those with C of phenyl rings $(1.823-1.857 \AA)$. These differences were also recognized in the Pd, Ni, Mo complexes of iron carbonyls [26]. Angles at P atoms are distinguished by two types; 103 and 113° for $\mathrm{C}-\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{P}-\mathrm{Fe}$, respectively. The $\mathrm{C}-\mathrm{C}$ bond lengths and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in cyclopentadienyl rings are well in the range of those reported and do not show any particular effect of substitution. Bond lengths and angles in the phenyl rings are within the ranges usually found.

Fig. 1. Molecular structure of ($\left.\eta^{1}-\mathrm{BPPF}\right) \mathrm{Fe}(\mathrm{CO})_{4}$ (2). Atoms are represented by 50% probability thermal ellipsoids.

 themmal elliposids

 thermal ellipsoids.

The triiron decacarbonyl moiety of complex $\mathbf{5}$ is found to be ordered, unlike the disorders found in two previous structural studies of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ [23,24]. With relatively high resolution ($2 \theta_{\text {max }}$ as high as 55.1°), the structure of the iron carbonyl moiety shows a triangle of Fe atoms and 8 terminal and 2 bridged carbonyls with a total of approximate C_{2}, symmetry. However, a close examination of the two bridged carbonyls lowered the symmetry to C_{2} (see Table 4 for structural data around the two carbonyls). All terminal carbonyls have cssentially lincar conformation (average $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ angles of 177°), while the two bridged ones have angles of 145.7 and 133.8°, respectively, toward two Fe atoms in the cluster. Marginal difference in bond lengths of CO between terminal and bridged ones was recognized (1.13 and $1.18 \AA$, respectively, on average).

Finally, the $\mathrm{Fe}-\mathrm{Fe}$ distances in complex 5 are $2.553(2) \AA$ for the one with bridging carbonyls and P atoms of BPPF, 2.728(2) and 2.730(2) \AA for the ones without such bridging carbonyls in between. Interestingly, the four Fe atoms of the complex are located almost on the same plane; $0.05 \AA$ (Fe of ferrocene) above the least-square plane of the three Fe atoms of $\mathrm{Fe}_{3}(\mathrm{CO})_{10}$ moiety.

Acknowledgments

TJK gratefully acknowledges the Korea Science and Engineering Foundation for financial support (Grant No. 88-0304-03). NHH expresses a sincere gratitude to MMT for travel and financial support.

References

1 M. Kumada, T. Hayashi and K. Tamao, Fundamental Research in Homogeneous Catalysis, Plenum, New York, 1982, p. 175.
2 T. Hayashi and M. Kumada, Acc. Chem. Res., 15 (1982) 395.
3 W.K. Cullen, F.W.B. Einstein, I. Jones and I.J. Kim, Organometallics, 2 (1983) 741.
4 W.R. Cullen, F.W.B. Einstein, T. Jones and T.J. Kim, Organometallics, 4 (1985) 346.
5 T.G. Appleton, W.R. Cullen, S.V. Evans, T.J. Kim and J. Trotter, J. Organomet. Chem., 279 (1985) 5.

6 T.J. Kim and K.C. Lee, Bull. Korean Chem., 10 (1989) 279.
7 T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi and K. Hirotsu, J. Am. Chem. Soc., 106 (1984) 158.

8 W.R. Cullen, S.V. Evans, N.F. Han and J. Trotter, Inorg. Chem.. 26 (1987) 514.
9 Y. Ito, M. Sawamura and T. Hayashi, J. Am. Chem. Soc., 108 (1986) 6405.
10 Y. Ito, M. Sawamura and T. Hayashi, Tetrahedron Lett., 289 (1987) 6215.
11 T.J. Kim, K.H. Kwon, S.C. Kwon, J.O. Baeg, S.C. Shim and D.H. Lee, J. Organomet. Chem., 389 (1990) 205.

12 W.R. Cullen and J.D. Woolins, Coord. Chem. Rev., 39 (1981) 1.
13 D.J. Hill, G.K. Girard, F.L. McCabe, R.K. Johnson, P.D. Stupik, J.H. Zhang, W.M. Keiff and D.S. Eggleston, Inorg. Chem., 28 (1989) 3529.
14 S. Onaka, A. Mizano and S. Takagi, Chem. Lett., 1989, 2037.
15 D.D. Perin, W.L.F. Armarego and D.R. Perin, Purification of Laboratory Chemicals, 2nd ed., Pergamon, New York, 1980.
16 T.J. Bishop, A. Davison, M.L. Katcher, D.W. Lichtenberg, R.E. Merril and J.C. Smart, J. Organomet. Chem, 27 (1971) 741
17 Programs used are mitrill, an integrated direct methods computer program (C.J. Gilmore, J. Appl. Crystallogr., 17 (1984) 42) and dirdif, an automatic procedure for phase extension and refinement of difference structure factors (P.T. Berntskens, Technical Report 1984/1, Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, Netherlands).
 $\left.\left(p_{6}^{2}\right)^{2}\right] / L_{n}^{2}$, where $S=\operatorname{scan}$ rate, $C=$ total integrated peak count, $R=x$ rato of sat lime to background counting time. $B=$ total background count. $i_{;}$, Iorent/ pobarization factor, and $p=\mathrm{p}$-factor.
19 D. T. Cromer and J.T. Waber. International Tabke for X-Ray Crastalngtaphy. Vol IV. The Kymoh Press, Birmingham. England. 1974. Table 2.2A.
20 J.A. Ibers and W.C. Hamilton, Acta Crystallogr. 17 (1964) 781.
21 D.T. Cromer. International Tables for X Ray Cryatallography. Vol IV. The Kumoch Press Birmingham, England. 1974. Table 2.,.1

23 (.IF. Wei and L.F. Daht. J. An, Chem. Soc. 91 (1969) 1.351
24 F.A. Cotton and I.M. Troup, I. Am. Chem. Soc. 94 (1474) 4155 ,
25 R.P. Battagla. D. Delledonme. M. Nardeli, C. Pelozi. G. Prediert and G.P.f. Chiusoli. I. Organomet. Chem., 330 (1087) 101.
26 I.R. Buther. W.R. Cullen. T.I. Kims S.J. Retig and J. Troter Organometables 4 (ooxs) 072.

[^0]: Correspondence to: Dr. T.J. Kim or Dr. N.H. Heo, Department of Industrial Chemistry, Kyungpook National University, Taegu 702-701, South Korea.

[^1]: * Reference number with asterisk indicates a note in the list of references.

